Results and Updates from the Vessix REINFORCE Program

Martin B. Leon, MD

Columbia University Medical Center Cardiovascular Research Foundation New York City

8 mins

Disclosure Statement of Financial Interest TCTAP 2019; Seoul, Korea; April 27-30, 2019

Martin B. Leon, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

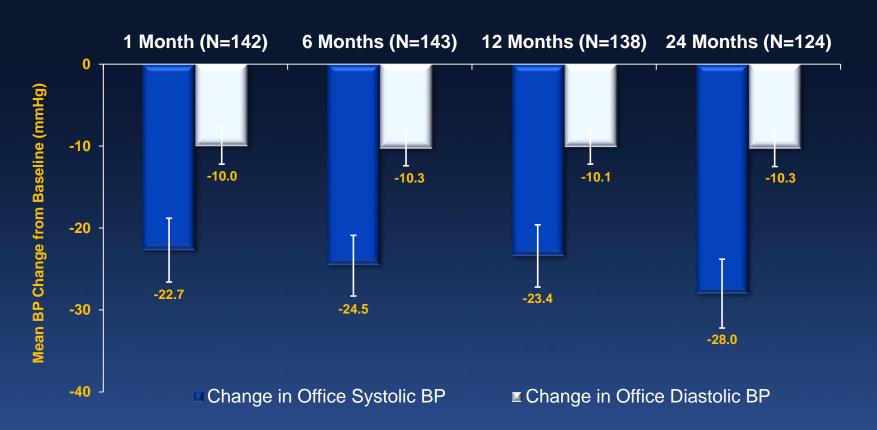
Affiliation / Financial Relationship	Company
Grant / Research Support	Abbott, Boston Scientific, Edwards Lifescience, Medtronic
Consulting Fees / Honoraria	Boston Scientific, Gore
Shareholder / Equity	Cathworks, Elixir, GDS, Medinol, Valve Medical

Six Month Results of the REDUCE HTN:REINFORCE Study of Renal Denervation for the Treatment of Hypertension

Michael A. Weber, MD

Division of Cardiovascular Medicine
SUNY Downstate College of Medicine
State University of New York
Health Science Center
Brooklyn, New York

Ajay J. Kirtane, MD, SM; Matthew R. Weir, MD; Jai Radhakrishnan, MD; Tony Das, MD; Martin Berk, MD; Farrell Mendelsohn, MD; Alain Bouchard, MD; German Larrain, MD; Michael Haase, MD; Juan Diaz-Cartelle, MD; Martin B. Leon, MD



REDUCE-HTN FIM+PMS

Significant Office Blood Pressure Reductions Over Time

P<.0001 for each timepoint vs baseline. Error bars represent 95% confidence bounds.

Single Center Experience with RDN: 57 Uncontrolled Hypertensive Patients Treated by One Operator (TF Lüscher)

Effects on Office Blood Pressure

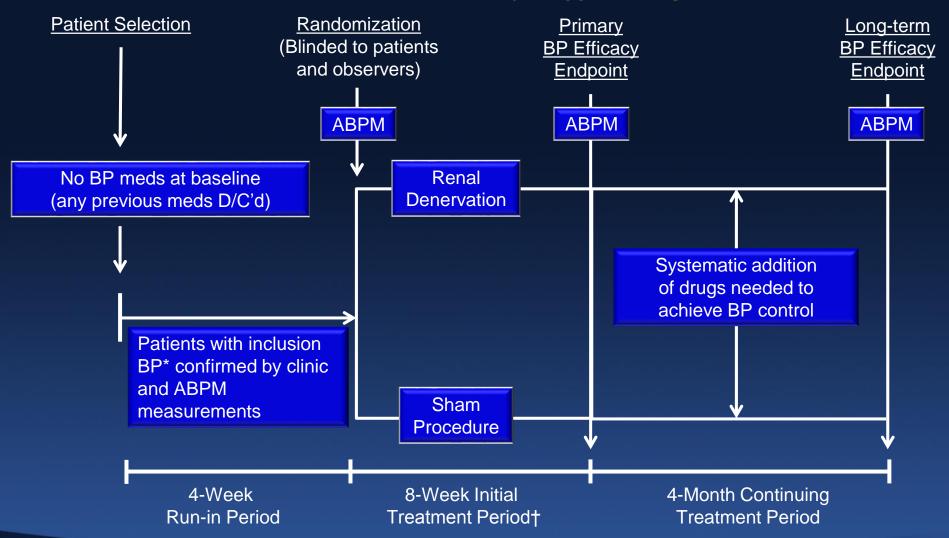

		SBP/DBP (mmHg)			
Device	Number	Baseline	Δ at 6 Months	Δ at 12 Months	Δ at 24 Month
Vessix	19	155/87	-19/-8	-29/-7	-29/-13
Symplicity	24	173/89	-25/-5	-22/-4	-22/-2
EnligHTN	14	175/94	-29/-9	-36/-11	-42/-14

Investigational Device: Vessix™ Renal Denervation System

- Balloon-based technology
 - 4 7 mm diameters
- Helical pattern of bipolar RF electrodes
- All electrodes are activated simultaneously
- 30 second treatment time
- Temperature-control algorithm for energy delivery at 68°C
- One-button operation
- 7F compatible (Vessix Reduce™ Catheter)

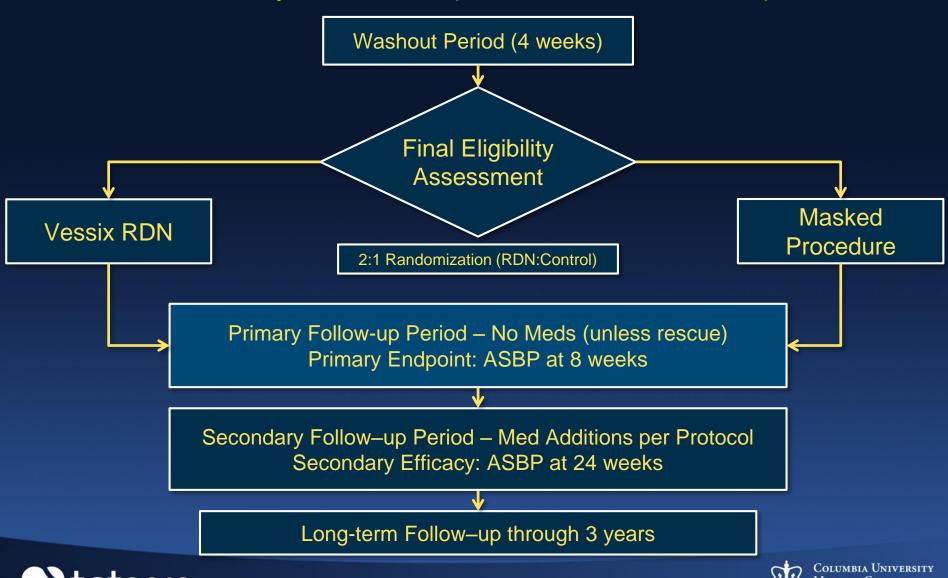
Rationale for Renal Denervation Study Designs

To justify renal denervation as a meaningful therapy for HTN, we must demonstrate:


- 1. Renal denervation reduces BP more than placebo (sham)
- 2. The combination of renal denervation and drug therapy is significantly better than either therapy alone

Focused Protocols for Renal Denervation:

Patients Initially Off Drugs



- *Clinic systolic BP 150-180 mmHg and ABPM systolic BP 140-170 mmHg
- †Can be extended with careful patient oversight.
- From: Weber/ Kirtane/ Mauri/Townsend/Kandzari/Leon.
 CCI/ Clin Cardiol/ JCH 2015;17:743-750

REDUCE-HTN: REINFORCE

Study Overview (N=100, ≤20 US Sites)

| NewYork-Presbyterian

REDUCE-HTN: REINFORCE

Study Overview (N=100, ≤20 US Sites)

Randomization	2:1 (Vessix:Control) Control: Masked Procedure (after renal angiogram)
Key Inclusion Criteria	 Age ≥18 and ≤75 OSBP ≥150 mmHg and ≤180 mmHg Average 24-hour ASBP ≥135 mmHg and ≤170 mmHg For each kidney, a main renal artery, with or without accessory renal arteries, with diameter ≥3.0 mm and ≤7.0 mm and length ≥20.0 mm
Primary Efficacy Assessment	Reduction in average 24-hour ASBP at 8 weeks post randomization

REDUCE-HTN: REINFORCE

Statistical Methods and Endpoints

Power	93 patients required to give at least 80% power to test primary endpoint (expected difference between groups 6 mmHg)
Primary Endpoint	Difference in reduction of 24h ambulatory systolic BP between intervention group and sham control at 8 weeks
Secondary Endpoints	At 8 weeks: •Reduction in office systolic and diastolic BPs •Proportion at target BP At 6 months: •Reduction of 24h and office systolic and diastolic BPs

Study Enrollment Cessation The REDUCE-HTN: REINFORCE Trial

March 2018 (M Weber at CRT)

- Due to ongoing enrollment challenges, an interim analysis was conducted and reviewed by the Data Monitoring Committee (DMC) and Physician Steering Committee
- Futility: According to the interim analysis, pre-defined statistical decision rule definition for futility and confirmation by the DMC, it was determined that the trial could not achieve the primary endpoint at 8 weeks
- After careful consideration, the decision was made to end enrollment in this pilot trial, effective October, 2017
- The trial continues to follow subjects per protocol for those enrolled (N=51)



Baseline Characteristics

	Vessix Renal Denervation	Control
N	34	17
Age (y)	58.5±10.1	58.2±9.8
Male/Female	53%/47%	76%/24%
Race and Ethnicity		
Asian	6%	0%
Black, of African Heritage	18%	18%
Caucasian	79%	82%
Hispanic or Latino	3%	6%
Current Diabetes	18%	12%
Hyperlipidemia	38%	24%
Coronary Artery Disease	15%	18%
Myocardial Infarction	9%	6%
Office BP		
Systolic	166.3 ± 9.0	166.2 ± 8.8
Diastolic	94.9 ± 11.8	94.9 ± 11.1
24 h BP		
Systolic	148.3 ± 10.9	149.1 ± 7.2
Diastolic	85.7 ± 9.1	86.4 ± 9.8

Renal Artery Anatomy

	Vessix Renal Denervation (N=34)	Control (N=17)	Total (N=51)
Renal Artery			
Left Renal Artery	100%	100%	100%
Left Renal Accessory Artery	26%	18%	24%
Right Renal Artery	100%	100%	100%
Right Renal Accessory Artery	26%	41%	31%
Max Renal Diameter (mm)	6.5±1.8	6.4±1.6	6.5±1.7
Reference Renal Diameter (mm)	5.4±1.4	5.5±1.3	5.5±1.4
Renal Length (mm)	48.3±18.1	46.9±16.9	47.8±17.6
Percent Stenosis (%)	17.2±6.4	17.0±8.6	17.1±7.2

Safety through 6 months

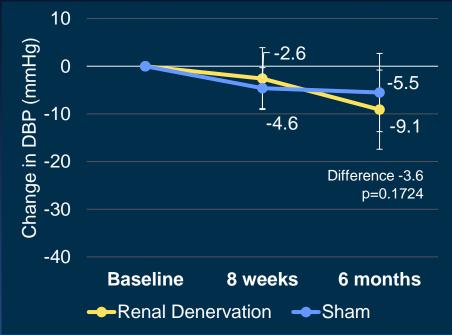
 Of the safety endpoint events, only 1 hospitalization for hypertensive crisis occurred (CEC-confirmed)

	Vessix Renal	Control
	Denervation (N=34)	(N=17)
All Cause Death	0%	0%
Renal Failure	0%	0%
Hypertensive Crisis	3% (1/34)	0%
Severe Hypotension/Syncope	0%	0%
Significant Embolic Event	0%	0%
Renal Artery Dissection or Perforation	0%	0%
Vascular Complications	0%	0%
Renal Artery Stenosis >70%	0%	0%

Antihypertensive Medication Usage

	Vessix Renal Denervation (N=34)	Control (N=17)
Baseline (post-washout)	0	0
6 Months		
On antihypertensive drug	79%	82%
Number of drugs	1.3 ± 0.5	1.2 ± 0.4

 Medications could be initiated following the 8-week primary efficacy assessment, unless excessive BP increases necessitated earlier use



Change in 24-Hour Blood Pressures

Baseline BP (mm Hg)	Systolic	Diastolic
Vessix	148.3±10.9	85.7±9.1
Control	149.1±7.2	86.4±9.8

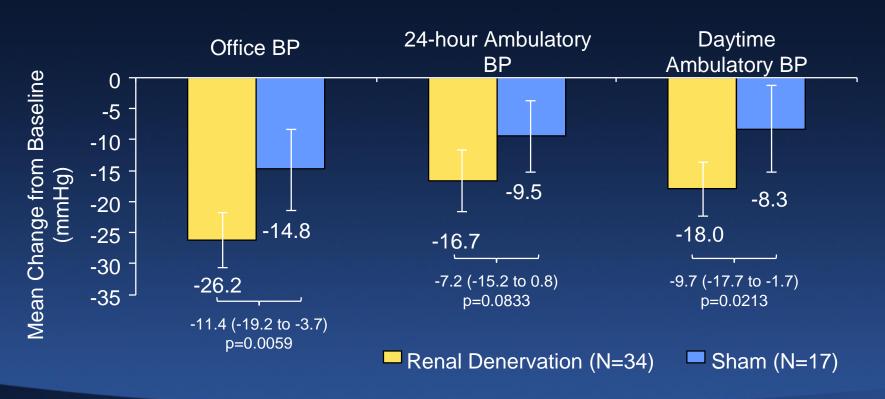
Systolic

Diastolic

Change in Office Blood Pressures

Baseline BP (mm Hg)	Systolic	Diastolic
Vessix	166.3±9.0	94.9±11.8
Control	166.2±8.8	94.9±11.1

Systolic


Diastolic

Change in Blood Pressures at 6 Months

 Systolic BP continued to decrease in the Vessix group, with a lesser decrease in the control group

Conclusions

- No procedural or clinical safety concerns
- Primary BP endpoint at 8 weeks (in patients not taking BP meds) was no different in Vessix-treated vs. control patients
- However, at 6 months:
 - ~ 80% of patients in both groups were taking BP meds
 - Ambulatory and office BP reduced significantly more in Vessix-treated vs. control patients
- Late appearance of efficacy ? due to slow onset of denervation on SNS afferent signals OR renal denervation is more effective in patients receiving BP meds

Conclusions

• Preliminary data from this small randomized sham-controlled trial suggest that the Vessix renal denervation catheter system may be of clinical value in treating hypertension.

